
LayerCake: Zero-Collateral L1 Bridges

Sean Rowan1 Hugo Philion1 Näıri Usher1

1Flare Research
{sean,hugo,nairi}@flare.network

March 16, 2022

Abstract

Bridges between L1 blockchains enable: 1) the transport of an asset from one L1 to another
for use in applications on the travelled-to L1 and 2) the return of that asset to the original L1
after potentially acquiring new ownership based on the state transition rules on the travelled-to
L1. A safety risk of existing designs for such bridges is that they lose safety if either 33% of the
validators of a connected proof-of-stake L1, or 51% of the validators of a connected Nakamoto
consensus L1 decide to attack the bridge. Due to this risk, L1 bridges today have an implicit
limit to the amount of value that can cross them of below 33% of the staked value on the less-
valuable connected L1. In this paper we present LayerCake, a novel L1 bridging protocol that
has only a short-duration collateral requirement while crossing the bridge, as opposed to a full-
duration collateral requirement that other protocols require for the entirety of time that an asset
is represented on the travelled-to L1.

1 Introduction

Consider the fundamental security guarantee of how an L1 like Bitcoin operates: imagine that all of
the hash-power in the world today mining Bitcoin suddenly decided to move someone’s Bitcoin on the
network without that person signing a valid transaction to do so. If this happened, then the entire
world watching the network would independently discern that they should ignore all of these miners,
user funds would not be at risk, and Bitcoin could continue making progress with new honest miners.

Conversely, bridges across L1s today do not share the same fundamental security guarantees of an
L1. Instead, these bridges typically involve relying on a globally trusted set of entities to custody user
funds. If these custodians become faulty, then all user funds on the bridge are at risk of being lost.
This is the model adopted by Chainlink’s CCIP protocol [5], the AVAX Bridge [1], LayerZero [13],
Axelar [2] and Wormhole Bridge [12].

Another more technical but less popular approach for creating a bridge across L1s involves the use
of light-client relays [3] to prove the state of an L1 directly to a contract on another L1. There are a
number of security flaws with light-client relays, and intuitively this is because blockchain consensus
protocols are not optimally constructed as a smart contract. Flattening a blockchain into a light-client
relay necessarily removes the richness of properties and security guarantees that are available in their
full original implementation. In practice when used in this setup, they also operate very slowly and
with a large code surface due to the use of data availability sampling to improve the security of light
client relays to a degree [3]. The fundamental limit to the security of light client relays used for bridging
across L1s is that they cannot protect against theft of user funds under a 33% attack on an L1 they
bridge, and so they must rely on slashing faulty validators of that L1 in order to protect value that
crossed the L1 bridge [9, 8]. This model is leveraged by NEAR’s Rainbow Bridge [9], Harmony Horizon
Bridge [6] and Poly Network [11].

Cumulatively in the past year, $1Bn in user-value has been hacked from bridges connecting two
L1s [10]. Although these hacks were on account of implementation errors, they highlight the demand
that the world is placing on cross-L1 bridges, and we must be able to do more with less collateral
while operating with safety guarantees. Otherwise, cross-L1 bridges will have severe limitations on the
amount of value that can cross them due to the so-called anti-network effect [4]: the more users the
system has, the less useful it becomes due to the increased risk of hacking.

1

{sean, hugo, nairi}@flare.network

In this paper, we propose a solution to the anti-network effect problem of cross-L1 bridges using
a novel state relay mechanism called the state connector, which delivers information from connected
blockchains without degrading their full security properties. The state connector can directly validate
state correctness without any need for data availability sampling or challenge periods, and it can
also implicitly withstand safety and liveness attacks on connected L1s. A resulting cross-L1 bridge
construction called LayerCake, which leverages the state connector, requires only a temporary collateral
lock-up while crossing the bridge that is proportional to the amount of value being sent across the
bridge. LayerCake makes no assumption about requiring slashing of validators on connected L1s in its
security model, and so the system has a zero long-term collateral requirement once value has crossed
the bridge. Compare this to other designs that are constrained by requiring the total value deposited
on their bridge across all users to be below 33% of the staking value on the less-valuable connected L1.
If the total value deposited surpasses this threshold, then it becomes favorable to attack such designs.

2 The State Connector

The purpose of the state connector is to relay the state of connected blockchains in a manner that:
proactively validates state correctness, withstands safety attacks, and recovers from liveness failures.
The ability to proactively validate state correctness speeds up state relay due to not requiring data
availability sampling or challenge periods, as is required in light-client relay setups. These properties
are achieved using the two core protocols of the state connector: the RCR and branching protocols.

The RCR protocol enables users to request information about connected blockchains to be proven,
e.g. the existence or non-existence of a transaction. These requests are interleaved with committed and
revealed responses from attestation providers, which can be operated by anyone without any staking
requirement.

The branching protocol enables proactive local oversight on the RCR protocol by enabling each
node operator in a state connector enabled network, e.g. Flare, to locally override the default decision
of the state connector with their own set of attestation provider(s) that they wish to rely on, as
illustrated in figure 2. The branching protocol always guarantees binary deliberations, so any node
that overrides the default decision of the state connector at a particular attestation round yields a
consistent state.

2.1 RCR Protocol

There are three phases of the RCR protocol: Request, Commit and Reveal. These occur sequentially,
as shown in figure 1.

Request Commit Reveal

t0 t1 t2 t3

Figure 1: The three phases of the RCR protocol. Note that the protocol can be parallelised, see
appendix A.2 for more details.

Request Phase During this phase, any user can submit a request to Flare to have information
from another blockchain proven. User requests in the RCR protocol must be paired with a data avail-
ability proof. For example, to prove an L1 transaction that requires N block confirmations, the request
must be paired with the blockhash of the N th block after the block that contains the transaction being
proven. This proves that the user knew the block hash ahead of time, signalling the block’s availability.

Commit Phase During the next window of time, attestation providers have the opportunity to
commit an obfuscated Merkle root hash that forms the basis to a Merkle tree of the proofs requested
in the previous phase. Anyone may operate as an attestation provider without any capital require-
ment, but a default set is used as the minimal requirement for passing a vote. The default set may be
overridden locally on one’s own Flare node using the branching protocol described in section 2.2.

2

Flare
State

Request Commit Reveal Request Commit Reveal

Correct
Branch

Incorrect
Branch

t0 t1 t2 t3 t4 t5 t6

Figure 2: The state connector branching protocol. In the RCR protocol at time t3 in the above
example, a majority of default attestation providers have committed the same incorrect Merkle root
hash. This will split the network into a correct branch and an incorrect branch, where the correct
branch is formed by ignoring the latest revealed attestation round as if it reached no default attestation
provider majority.

Reveal Phase Finally in the next window of time, attestation providers reveal the Merkle root
hashes that they committed to in the previous round. Once the reveal phase concludes and the next
phase begins, the revealed votes are automatically counted. If a majority has been reached in the
default attestation provider set, and one’s local attestation provider concurs with the result, then all
requested proofs become immediately available to all contracts on the network using the Merkle root
hash to prove them.

2.2 Branching Protocol

The branching protocol protects Flare against incorrect interpretation of external blockchain state
proactively, such that there are never any rollbacks on the Flare state. Instead of having rollbacks,
contention on state correctness is handled via automatic state branching into a correct and incorrect
path. The security assumption is that if you as an independent node operator are correctly attesting
the requested blockchain state, then you will always end up on the correct branch of the Flare state.

Figure 3 presents an intuitive depiction of the role of the branching protocol. At block N , inde-
pendent nodes observing the network are in agreement with the relayed state of the network. Next,
assume that after a round of the RCR protocol, a majority decision is reached which is not accurate.
For instance, a transaction which has not occurred is accepted as being confirmed. At this point, nodes
observing the state connector will disagree with this outcome, since it does not match the reality they
observe. They will thus fork as they disagree with the default result of the state connector. At block
N +1, all non-faulty independent nodes will have discarded the default outcome of the state connector
and thus once again the state of the network will be consistent with reality.

When an independent node disagrees with the majority decision by the default attestation providers,
its state database remains unchanged as if the default attestation providers were unable to reach a
majority vote on a state connector round. This means that the independent node takes one step into
the state branch that it believes is correct, and it safely halts. This gives a physical signal for example
to an exchange, a collateral provider or other users involved in cross-chain use-cases that run their own
Flare infrastructure that the default branch of the state connector on Flare may be faulty. Non-faulty
core validators on a network leveraging the state connector will ultimately adopt the correct branch of
Flare; in the same manner of how a new dominant chain history appearing in a proof-of-work network
causes all nodes to automatically switch to that chain history [7].

2.3 Safety

The state connector operates by proving that a transaction either exists, or does not exist on an
observed chain. This means that the entire state of a connected chain is not relayed by the state
connector, and only specific information requested by users is relayed. Applications building on the

3

Flare Flare
(Faulty)

Flare
(Faulty)

Flare
(Correct)

Block N
(consistent)

Block N+1
(branched)

State
Transition

1
2

3

4

Figure 3: An intuitive depiction of the branching protocol of the state connector on Flare network.
Independent nodes, represented by triangles in the figure, can be run by anyone without any stake
in the network. 1) Independent nodes agree with the default state connector relayed state at Flare
block N. 2) Independent nodes fork when they disagree with the incoming default state connector
relayed state. The state connector branching protocol always guarantees a binary decision that causes
independent nodes that fork to be consistent. 3) At block N+1, there exists two possible states of
the Flare network after forking occurs: one that adopts the default majority decision of the state
connector, and another that has the same state as if the default state connector set couldn’t reach
any majority decision. Anyone in the world watching the network can independently discern that they
should ignore and discard the default path if it is faulty as depicted in the diagram above. 4) Without
communicating to each other and with open membership, all independent nodes can determine what
the correct branch is, and the rule for the network is that this branch must be adopted as the only
valid state transition at this block height.

state connector can use this to prove that a reorg occurred on an observed blockchain which affects a
transaction they are interested in: a transaction may be proven to exist on an observed blockchain,
and then later it may be proven to no longer exist on that same blockchain. A practical example of an
application leveraging this pattern in combination with a time-bounded collateral lockup to mitigate
a 51% attack on an observed chain is described in section 3.5.

2.4 Liveness

A proof-of-stake blockchain loses liveness if more than 33% of the validators go offline. If these
validators remain offline, then the live pool of validators and the world observing the blockchain may
engage in ‘social consensus’ to bench the non-live validators and restart the network. However, this
social recovery mechanism would not work in a light-client relay protocol. Consider the scenario where
more than 33% of the validator set in control of a light-client relay go offline. The smart contract for
the light-client relay would only be permitted to make progress if more than 66% of the validators sign
a relay message. This liveness risk has the ability to lock deposit contracts in bridges using light-client
relays unless a trusted fall-back mechanism is put in place to mitigate it for such relay protocols.

However, for the state connector, recovering from an L1 network liveness failure requires no trusted
fallback mechanism since the state connector regains liveness as soon as the L1 regains liveness regard-
less of the L1 having benched any number of non-live validators on its network to regain liveness.

4

3 LayerCake L1 Bridge Construction

Anyone may operate as a bandwidth provider for a LayerCake L1 bridge if they lock up sufficient
collateral on both the origin L1 and on Flare. Crucially, the sum of all bandwidth collateral across all
bandwidth providers does not represent a 1:1 backing of the total value that crosses the LayerCake
bridge. Instead, the bandwidth collateral represents the rate at which value can cross the bridge. As
an analogy to a real-world car bridge, total bandwidth collateral is akin to how many cars the bridge
can hold as they are crossing, but not the total number of cars that have crossed.

2) State Connector
observes deposit

L1
(Ethereum)

Flare

BPs BPs BPs
3) Deposit bandwidth

collateral (FLR) BPs

1) Deposit bandwidth
collateral (ETH)

4) Light-client relay
rotates BPs (weekly)L1

(Solana)

Figure 4: Bandwidth provider (BP) collateral setup with Ethereum as the origin L1.

Users crossing a LayerCake bridge pay a market-priced fee, similar to a gas fee, to compete for
reservation of bandwidth provider collateral on both the origin L1 and on Flare. The reservation of
bandwidth provider collateral acts as the backing that secures the user’s transit across the bridge.
LayerCake can handle any combination of smart contract L1s as origin and destination L1s to form a
bridge. It is not recommended or accommodated in the protocol to bridge to a destination L1 from
an origin L1 via an intermediate L1.

New bandwidth providers are included in a LayerCake bridge through a weekly changeover process
that leverages a light-client relay directly between L1s to prove new bandwidth collateral deposits on
the origin L1. The usage of a light-client relay in this step is resistant to reorgs due to operating
slowly once per week. If the light-client relay encounters a liveness failure, then the LayerCake bridge
would still be able to operate given at least one honest bandwidth provider, as they would enable
users to safely exit the bridge. The collateral deposited by a bandwidth provider on Flare in its native
asset FLR matches the amount of value deposited by the bandwidth provider on an origin L1. The
purpose of this additional collateral on Flare on top of the origin L1 collateral is for both mitigating
51% attacks on connected L1s and penalising faulty bandwidth providers.

Figure 4 illustrates a bandwidth provider set up with Ethereum as the origin chain. They first
deposit collateral in ETH on Ethereum and collateral in FLR on Flare. The bandwidth provider will
then be included at the next light-client relay rotation.

3.1 Mint Flow

Users crossing the LayerCake bridge deposit their asset on the origin chain, along with the bandwidth
reservation fee which they can increase to have higher priority in crossing the bridge sooner. Bandwidth
collateral is then reserved on both the origin L1 and on Flare by proving the deposit using the state
connector.

After bandwidth providers receive the signal that the user’s deposit is sufficiently collateralised for
crossing the bridge, the bandwidth providers then mint the corresponding representation of the user’s
asset on the destination L1, and they earn the user’s fee which is paid in the origin L1 asset directly.

The bandwidth collateral used for this bridge crossing on the origin L1 has a short cooldown time
before it is unlocked for use by another user crossing the bridge. Multiple users can cross the bridge at
the same time given sufficient supply of bandwidth collateral. The bandwidth collateral used on Flare
however has a longer cooldown time due to being used for mitigating 51% attacks where the user’s
deposit on the origin L1 may disappear if the origin L1 encounters a reorg.

5

3) State Connector
observes deposit

4) Bandwidth collateral
reserved on Flare

7) Bandwidth collateral
unlocks on Flare after

enough L1 confirmations
(e.g. 1 day)

2) Bandwidth collateral
reserved on Ethereum

for short duration
(e.g. 1 hour)

L1
(Ethereum)

Flare

6) State Connector
observes mint

L1
(Solana)

1) Deposit 1 ETH
+ fee User

A
BPs BPs BPs

5) Mint 1 sETH
for User A

BPs

Figure 5: LayerCake minting for a bridge between Ethereum and Solana. User A deposits 1 ETH on
Ethereum, as well as a fee, and receives 1 sETH in return on Solana.

In figure 5, a mint flow is illustrated for a user crossing from Ethereum to Solana. User A deposits
1 ETH as well as a fee on Ethereum. This immediately reserves bandwidth collateral on Ethereum.
Once the state connector has observed this deposit, bandwidth collateral is then reserved on Flare and
1 sETH is minted by bandwidth providers on Solana for user A. The state connector then observes
this mint, which then unlocks the collateral on Flare after enough L1 confirmations are observed such
that it’s assumed reorgs cannot occur; e.g. after 1 day of L1 confirmations.

3.2 Redeem Flow

A different user may now own the minted asset on the destination chain. The new minted asset
owner may redeem the underlying asset by burning the minted asset on the redeem contract on the
destination chain. This leverages the same collateral reservation fee mechanism as in the mint flow,
where collateral on both the origin L1 and Flare are reserved.

3.3 Faulty Bandwidth Providers

If a bandwidth provider incorrectly mints or unlocks value on either the destination or origin chains,
then they are temporarily benched from participation in the bridge by admins whose only authority in
the protocol is to bench bandwidth providers after they have executed at least one transfer of user value
since being instated as a bandwidth provider. The LayerCake smart contracts only permit bandwidth
providers to periodically transfer value up to an amount equal to the bandwidth collateral they have
deposited on the origin L1. For example, over the span of an hour, bandwidth providers would be able
to transfer up to the amount of value they have deposited as bandwidth collateral.

Figure 6 shows how the risk of a faulty bandwidth provider is mitigated. Bandwidth providers can
be benched immediately after minting/unlocking value incorrectly. Then, any bandwidth collateral
they had on Flare is immediately seized using the state connector to prove an invalid mint/unlock,
and then burned. Inevitably then at the next weekly bandwidth provider rotation time, the invalid
mint/unlock will be proven to the origin L1 deposit contract, and the bandwidth provider’s origin L1
collateral is seized and used to repair the backing to the user deposit contract back to parity with the
minted pool.

3.4 Faulty Admins

Faulty admins attempting to shut down the LayerCake bridge can at most only cause a slowdown of
the bridge but never a halt. Admins are only permitted to bench a bandwidth provider after they make
at least one value-transfer since being instated as a bandwidth provider each week. Honest bandwidth
providers are reinstated automatically if they were incorrectly benched, so admins have the ability to
slow down the LayerCake bridge traffic to at worst the total bandwidth collateral moving once per
week.

6

2a) State Connector
observes invalid unlock

3) Flare bandwidth collateral
seized from BPs

2c) Admins bench faulty BPs,
this is the only admin role

L1
(Ethereum)

Flare

2b) State Connector
observes invalid mint

L1
(Solana)

BPs BPs BPs
1b) Mint 1 sETH

for BPs
BPs

1a) Unlock 1 ETH
for BPs BPs BPs BPs BPs

BPs BPs BPs Admins

L1
(Solana)

L1
(Ethereum)

5) Light-client relay
rotates BPs, faulty BP's
L1 bandwidth collateral

seized by deposit contract

4) Next BP rotation time
arrives (weekly)

Figure 6: Benching faulty bandwidth providers in response to incorrect minting / unlocking of user
value.

Admins are a closed set of entities that do not custody user funds, and only a single admin is
required to bench a bandwidth provider. This means that in order to bench a faulty bandwidth
provider, the security assumption is that there is at least one honest and live admin.

3.5 Faulty L1s

The only safety assumption in LayerCake about connected L1s is that reorgs on them cannot occur
after some period of time, for example 1 day. This is the amount of time that bandwidth provider
collateral on Flare is locked after a user crosses the bridge, so that it is available in effect as an insurance
payout to the bridge user-deposit pool in the event of a Byzantine attack.

3) State Connector
observes deposit

4) Bandwidth collateral
reserved on Flare

8) State Connector
observes reorg

9) Bandwidth collateral
on Flare provides backing

for User A's share in sETH pool

L1
(Ethereum)

Flare

6) State Connector
observes mint

L1
(Solana)

1) Deposit 1 ETH
+ fee

User
A

BPs BPs BPs
5) Mint 1 sETH

for User A
BPs

7) Ethereum gets 51%
attacked and User A's
ETH returns to them

User
A

2) Bandwidth collateral
reserved on Ethereum

Figure 7: Byzantine attack mitigation against a connected L1.

This is illustrated in figure 7, in the context of a bridge connecting Ethereum and Solana. User A
mints 1 sETH as before. If Ethereum then suffers from a 51% attack, resulting in user A’s deposited

7

ETH being returned to them, then this will in turn be observed by the state connector. A portion of
the bandwidth collateral on Flare now provides backing for user A’s share in the sETH pool.

4 Conclusion

We have proposed a solution to the anti-network effect problem of cross-L1 bridges. The protocol
only requires collateral for value in transit across the bridge, and therefore has no requirement for
collateralising the total value that has crossed the bridge. The protocol is designed to withstand safety
and liveness attacks on connected L1s, as well as faulty bandwidth providers that incorrectly move
funds.

References

[1] Avalanche. Avalanche Bridge (AB) FAQ. Accessed: 2022-03-06. url: https://docs.avax.

network/learn/avalanche-bridge-faq/.

[2] Axelar Network. “Axelar Network: Connecting Applications with Blockchain Ecosystems”. In:
https: // axelar. network/ wp- content/ uploads/ 2021/ 07/ axelar_ whitepaper. pdf

(2021).

[3] Mustafa Al-Bassam, Alberto Sonnino, and Vitalik Buterin. “Fraud and data availability proofs:
Maximising light client security and scaling blockchains with dishonest majorities”. In: arXiv
preprint arXiv:1809.09044 (2018).

[4] Vitalik Buterin. Fundamental limits to the security of bridges that hop across multiple “zones of
sovereignty”. Ed. by Reddit. [Online; last accessed 05-March-2022]. 2022. url: https://old.
reddit.com/r/ethereum/comments/rwojtk/ama_we_are_the_efs_research_team_pt_7_07_

january/hrngyk8/.

[5] Chainlink. Introducing the Cross-Chain Interoperability Protocol (CCIP) for Decentralised Inter-
Chain Messaging and Token Movements. Accessed: 2022-03-06. url: https://blog.chain.
link/introducing-the-cross-chain-interoperability-protocol-ccip/.

[6] Rongjian Lan et al. “Horizon: A Gas-Efficient, Trustless Bridge for Cross-Chain Transactions”.
In: arXiv preprint arXiv:2101.06000 (2021).

[7] Satoshi Nakamoto. “Bitcoin: A peer-to-peer electronic cash system”. In: Decentralized Business
Review (2008), p. 21260.

[8] NEAR Network. Rainbow Bridge CLI. Ed. by Github. 2022. url: https://github.com/aurora-
is-near/rainbow-bridge#security.

[9] NEAR Network. ETH-NEAR Rainbow Bridge. Accessed: 2022-03-06. url: https://near.org/
blog/eth-near-rainbow-bridge/.

[10] Rekt News. Leaderboard. Accessed: 2022-03-06. url: https://rekt.news/leaderboard/.

[11] Poly Network. An Interoperability Protocol for Heterogeneous Blockchains. 2020. url: https:
//poly.network/PolyNetwork-whitepaper.pdf.

[12] Wormhole. Token Bridge. Accessed: 2022-03-06. url: https://docs.wormholenetwork.com/
wormhole/existing-applications/token-bridge.

[13] Ryan Zarick, Bryan Pellegrino, and Caleb Banister. “LayerZero: Trustless Omnichain Interoper-
ability Protocol”. In: arXiv preprint arXiv:2110.13871 (2021).

A Appendix

A.1 Faulty State Connector Example

If the state connector suffers from a false decision, then this decision will effectively be ignored by the
network. Thus, if the state connector incorrectly observes a deposit, then the branching protocol en-
sures that eventually each node will ignore the incorrect observation. Furthermore, the state connector

8

https://docs.avax.network/learn/avalanche-bridge-faq/
https://docs.avax.network/learn/avalanche-bridge-faq/
https://axelar.network/wp-content/uploads/2021/07/axelar_whitepaper.pdf
https://arxiv.org/pdf/1809.09044.pdf
https://old.reddit.com/r/ethereum/comments/rwojtk/ama_we_are_the_efs_research_team_pt_7_07_january/hrngyk8/
https://old.reddit.com/r/ethereum/comments/rwojtk/ama_we_are_the_efs_research_team_pt_7_07_january/hrngyk8/
https://old.reddit.com/r/ethereum/comments/rwojtk/ama_we_are_the_efs_research_team_pt_7_07_january/hrngyk8/
https://blog.chain.link/introducing-the-cross-chain-interoperability-protocol-ccip/
https://blog.chain.link/introducing-the-cross-chain-interoperability-protocol-ccip/
https://arxiv.org/pdf/2101.06000.pdf
https://github.com/aurora-is-near/rainbow-bridge#security
https://github.com/aurora-is-near/rainbow-bridge#security
https://near.org/blog/eth-near-rainbow-bridge/
https://near.org/blog/eth-near-rainbow-bridge/
https://rekt.news/leaderboard/
https://poly.network/PolyNetwork-whitepaper.pdf
https://poly.network/PolyNetwork-whitepaper.pdf
https://docs.wormholenetwork.com/wormhole/existing-applications/token-bridge
https://docs.wormholenetwork.com/wormhole/existing-applications/token-bridge
https://arxiv.org/pdf/2110.13871.pdf

will eventually observe the correct deposit, and thus the LayerCake bridge crossing can continue as
normal. This is illustrated in figure 8.

Flare Flare
(Faulty)

Flare
(Faulty)

Flare
(Correct)

State
Transition

2) State Connector
observes deposit

incorrectly

L1
(Ethereum)

1) Deposit 1 ETH
+ fee User

A

6) State Connector
observes mint

4) Bandwidth collateral
reserved on Flare

7) Bandwidth collateral
unlocks on Flare

over time with more
L1 confirmations

L1
(Solana)

BPs BPs BPs
5) Mint 1 sETH

for User A
BPs

3) The state connector branching protocol
generates the correct branch of Flare that

observed the user deposit of
1 ETH + fee

Figure 8: Faulty default state connector operation is repaired implicitly by the branching protocol of
the state connector, such that collateral held on Flare always ultimately matches reality on L1s.

A.2 RCR Protocol Optimisations

The RCR protocol is optimised as follows. First, every window of time during the RCR protocol is
an opportunity to request L1 proofs, meaning that while a new proof is being requested, prior proofs
can be voted on in both the commit and reveal phase. This multiplies the throughput of the RCR
protocol by a factor of three, and is illustrated in figure 9.

Reveal Request Commit

t0 t1 t2 t3

Commit Reveal Request

Request Commit Reveal

Figure 9: Optimisation of the RCR protocol by overlapping voting rounds.

Second, when requests for new proofs are submitted to the state connector, storage is not invoked.
Instead, a Solidity event is emitted. This enables the total cost of the event request transaction to be
near 2k gas, i.e. 10% of the cost of a simple payment.

9

Finally, the gas usage of attestation providers is always constant, despite the number of proof
requests they handle, because they construct the proofs into a Merkle tree and simply vote on the
Merkle tree root hash. The Merkle tree algorithm can also be swapped out over time to more efficient
algorithms without impacting the core RCR protocol which always just votes on the root hash.

A.3 Bandwidth Provider Economics

Suppose there is a LayerCake bridge from Ethereum to Solana that can only move $1/day. The safety
assumption is that neither of these L1s can encounter a reorg after 1 week.

On Monday, a user moves $1 from Ethereum to Solana. In order to do this, $1 of collateral is
reserved both on Ethereum and on Flare. The collateral on Ethereum unlocks after 1 day, however
the collateral on Flare unlocks after 7 days in order to mitigate a reorg during that time. Suppose
that the user continues doing this every day for one week and then they stop. This would result in an
increasing amount of collateral locked on Flare: on day 7, only $1 would be locked on Ethereum, and
$7 would be locked on Flare, see table 1.

Day
Ethereum
collateral
locked

Flare
collateral
locked

1 $1 $1
2 $1 $2
3 $1 $3
4 $1 $4
5 $1 $5
6 $1 $6
7 $1 $7
8 $0 $6
9 $0 $5
10 $0 $4
11 $0 $3
12 $0 $2
13 $0 $1
14 $0 $0

Table 1: An example usage of bandwidth collateral in LayerCake, showing how collateral is locked for
longer on Flare than on the origin L1. The example demonstrates how the system can always be made
whole, i.e. fully backed 1:1 sETH to ETH, using Flare collateral in response to a reorg on a connected
L1 that occurs within 1 week.

Bandwidth providers are like insurance companies that steadily earn fees, and then occasionally
have to pay out a claim in the event of a reorg attack. The bandwidth providers can control their risk
by lowering the bandwidth of the bridge such that it doesn’t operate too quickly with too much value
at risk if a reorg occurs. If the security assumption is that reorgs on a connected L1 cannot occur after
1 week, then bandwidth providers can move a maximum of 52x their collateral on Flare through the
LayerCake bridge in one year. At a fee model then of 10 basis points (bps), they would yield 5.2%
maximum on their Flare collateral per year. However, if the security assumption is relaxed to reorgs
not occurring after 1 day, then bandwidth providers can move a maximum of 365x their collateral on
Flare through a LayerCake bridge in one year. At 10 bps fees, they yield 36.5% maximum per year.
Collateral held on Flare can be required to be over-collateralised, such that the value locked on Flare
is a multiple of the value on the bridged L1, in order to stabilise the Flare collateral backing in times of
high price volatility. At an over-collateralisation ratio of 1.5x, the maximum yield per year is divided
by this figure to return 24.3%. Fees may also spike to for example 50 bps in response to user demand
in crossing the bridge when it is at capacity. Also, while collateral is being used in LayerCake on Flare,
the Flare Time Series Oracle (FTSO) reward can be simultaneously earned by passively delegating to
FTSO data providers directly from the LayerCake contracts on Flare.

10

	Introduction
	The State Connector
	RCR Protocol
	Branching Protocol
	Safety
	Liveness

	LayerCake L1 Bridge Construction
	Mint Flow
	Redeem Flow
	Faulty Bandwidth Providers
	Faulty Admins
	Faulty L1s

	Conclusion
	References
	Appendix
	Faulty State Connector Example
	RCR Protocol Optimisations
	Bandwidth Provider Economics

